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We derive an expression for the determination of the apsidal angles that holds good for arbitrary central
potentials. This formula can be useful in the calculation of precession rates. Then we discuss under what
conditions the apsidal angles remain independent of the mechanical energy and angular momentum in the
central force problem and, as a consequence, an alternative and nonperturbative proof of Bertrand’s theorem is
obtained.
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I. INTRODUCTION

In 1873, Bertrand �1� published a short but important pa-
per in which he proved that there were only two central fields
for which all orbits radially bounded are closed, namely, the
isotropic harmonic-oscillator field and the gravitational one.
Because of this additional accidental degeneracy �2�—in the
language of group theory, we associated the unitary group
U�3� with the harmonic oscillator and the orthogonal group
O�4� with the gravitational potential—the properties of those
two fields have been under close scrutiny since Newton’s �3�
times. Newton addresses to the isotropic harmonic oscillator
in proposition X Book I of the Principia and to the inverse-
square law in proposition XI. Newton showed that both
fields give rise to elliptical orbits with the difference that in
the first case the force is directed toward the geometrical
center of the ellipse, and in the second case the force is
directed to one of the foci. Bertrand’s proof is concise, el-
egant, and, contrary to what one may be led to think by a
number of perturbative demonstrations that can be found in
textbooks and papers on the subject, fully nonperturbative.
As examples of perturbative demonstrations, the reader can
consult Refs. �2,4–6�. We can also find in the literature dem-
onstrations that resemble the spirit of Bertrand’s original
work as, for example, Refs. �2,7,8�. All perturbative demon-
strations and most of the nonperturbative ones, however,
have a restrictive feature; that is, they set a limit on the
number of possibilities of the existence of central fields with
the property mentioned above to a finite number and finally
show explicitly that among the surviving possibilities only
two—the Newtonian and the isotropic harmonic oscillator—
are really possible.

Let us now outline briefly Bertrand’s approach to the
problem. In his paper, Bertrand initially proved, by taking
into consideration, the equal radii limit that a central force
f�r� acting on a pointlike body able of generating radially
bounded orbits must necessarily be of the form,

f�r� = �r�1/p2−3�,

where r is the radial distance to the center of force, � is a
constant, and p is a rational number. Next, making use of this

particular form of the law of force and considering also an
additional limiting condition, Bertrand finally showed that
only for p=1 and p=1 /2, which correspond to Newton’s
gravitational law of force

f�r� = −
�

r2 ,

and to the isotropic harmonic-oscillator law of force

f�r� = − �r ,

respectively, we can have orbits with the properties stated in
the theorem. Moreover, Bertrand can also prove that only for
these laws of force, all bounded orbits are closed. For more
details, the reader is referred to the original paper or to its
English translation �1�.

For radially bounded orbits, there are two extreme values
for the possible radii, namely, a maximum and a minimum
one. These extreme values were named by Newton himself
superior apse and inferior apse, respectively, or briefly, apses.
The angular displacement between these two successive
points or apses defines the apsidal angle ��a. In a central
field of force, the apsidal angle depends on the total me-
chanical energy E and the magnitude of the angular momen-
tum �.

In the present paper, our major purpose is to derive a
general expression for the apsidal angle in terms of these
initial conditions. Putting aside the restriction of closed or-
bits, we ask ourselves the following question. For what po-
tentials the apsidal angle has the same value for all orbits—
that is for arbitrary energy and angular momentum—and
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FIG. 1. General form of the effective potential energy.
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what is its value? The answer will show that the apsidal
angle is constant for only two potentials: the Newtonian po-
tential and the isotropic harmonic-oscillator one, and conse-
quently, as a corollary, we have an alternative and nonpertur-
bative proof of Bertrand’s theorem .

II. APSIDAL ANGLE

In a central field, in which the magnitude of the force f�r�
depends only on the distance r= �r� to the center of force, we
can introduce the potential function V�r� with the property
f�r�=−�V�r� such that the total mechanical energy E of a
particle with mass m orbiting in this field is a constant of
motion. Thus, we write

E =
m

2
v2 + V�r� , �1�

where v is the velocity of the particle. Moreover, the conser-
vation of the angular momentum l of the particle in a central
field constrains its motion to a fixed plane and allows for the
introduction of an effective potential defined by �9�

U�r� = V�r� +
�2

2mr2 , �2�

with the help of which it is possible to reduce the motion to
an equivalent unidimensional problem. For �=0, the motion
is purely radial, but in this case we can evaluate the corre-
sponding apsidal angle by taking the limit �→0 in our gen-
eral results. Therefore, in what follows, we will consider �
�0.

Let us define for convenience the variable z=1 /r and the
functions v�z�=V�1 /z� and u�z�=U�1 /z� in such a way that
the effective potential �2� is now written as

u�z� = v�z� +
�2

2m
z2. �3�

At this point it would be natural, in order to have bounded
orbits, to suppose that the effective potential has a point of
minimum at z=z0. We will assume, however, a less restric-
tive condition. We will only impose that u��z0�=0. As we
will see below, we will be able to show that z0 must be an
extremum in order to have a force field that could generate
well-defined apsidal angles. Therefore, we write

u��z0� = v��z0� +
�2

m
z0 = 0, �4�

from which we obtain

�2 = − mv��z0�/z0. �5�

Evidently, Eq. �5� makes sense only for an attractive force
field. Taking this result into the effective potential �3�, we
can write

u�z� = v�z� −
v��z0�

2z0
z2. �6�

In this way, we see that the first derivative of the effective
potential at the point z=z0 is zero for each and every poten-

tial function v�z�. This means that the vanishing of this de-
rivative does not impose restrictions of any kind on the po-
tential function v�z�. The second derivative at the point z
=z0 is

u��z0� = v��z0� −
v��z0�

z0
. �7�

If u��z0� is zero for an arbitrary point z0, we see that the
potential must be of the form v�z�=a+bz2, and in this case
the force must be of the form � /r3. Newton in the proposi-
tion IX of Book I of the Principia showed that in this case,
the orbit is an equiangular spiral and therefore without
apsidal points. Hence, in what follows, we will suppose that
the second derivative of the effective potential is not null at
z0. Then we assume that this extremum of the effective po-
tential is in fact a minimum in order to permit bounded orbits
�Fig. 1�.

If now we assume that u and z are complex variables and
perform an analytical continuation of the function u�z�, we
can determine the inverse function z=z�u�, by applying the
generalization of the Bürmann-Lagrange series for a multi-
valued inverse function �10�. With this purpose in mind, we
choose the point u0=u�z0� as the point around which we will
perform the expansion of this function. The result is

z = z0 + �
n=1

�
1

n!
� dn−1

d�n−1�n����
�=z0

�u − u0�n/2, �8�

where

���� =
� − z0

�u��� − u�z0��1/2 , �9�

and u0=u�z0� is a first-order algebraic branching point of the
function z�u�. It follows that we can define two real inverse
functions of the function u=u�z�; the first one is

z1�u� = z0 + �
n=1

�

Cn�u − u0�n/2, �10�

which holds for z�z0 �or r�r0�. The second one is

z2�u� = z0 + �
n=1

�

�− 1�nCn�u − u0�n/2, �11�

which holds for z�z0 �or r�r0�, and where we have written
for convenience

Cn =
1

n!
	dn−1�n���

d�n−1 	
�=z0

. �12�

From Eq. �9� we notice that the functions z1�u� and z2�u� will
be well-defined real functions only if z0 is a point of mini-
mum of the effective potential. It is also convenient to write
the function �9� in the form
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���� =
1


v��� − v�z0� − v��z0��� − z0�
�� − z0�2 −

v��z0�
2z0

, �13�

which can be obtained by making use of Eq. �6�. For radially
bounded orbits, the two extreme values for the radii, namely,
rmax and rmin, maximum and minimum �or zmin and zmax�,
respectively, are determined by the condition ṙa=0 or ża=0.
The particle oscillates indefinitely between rmax and rmin. In
terms of the effective potential, radially closed orbits are
characterized by extreme points that satisfy the condition E
=U�ra�, or E=u�za�. For convenience, we take the direction
defined by the arbitrary vector r0 as the reference for the
measure of angular displacements. Hence, the angular dis-
placement between two successive apses, that is, the apsidal
angle ��a, can be written in the form

��a = ��1 + ��2, �14�

where ��1 is the angular displacement from the point r0 to
the point rmin and ��2 is the angular displacement to the
apsidal point rmax.

The angular displacement in a central field of force can be
easily determined from the conservation laws of the me-
chanical energy and the angular momentum. Hence, we can
write

��1 = − �
r0

rmin �

mr2

dr


 2

m
�E − U�

, �15�

and

��2 = �
r0

rmax �

mr2

dr


 2

m
�E − U�

. �16�

Making use of the inverse functions �10� and �11�, we have

��1 =
�


2m
�

U0

E dz1

dU

dU

�E − U�

=
�

2
2m
�
n=1

�

nCn�
U0

E �U − U0�n/2−1


E − U
dU , �17�

and

��2 =
�


2m
�

U0

E dz2

dU

dU

�E − U�

=
�

2
2m
�
n=1

�

n�− 1�nCn�
U0

E �U − U0�n/2−1


E − U
dU . �18�

The integrals in Eqs. �17� and �18� can be evaluated with the
help of

�
a

b

�x − a�	−1�b − x�
−1dx = �b − a�	+
−1B�	,
� ,

where

B�	,
� =
��	���
�
��	 + 
�

,

which holds for b�a, Re ��0, and Re 
�0 �see �11�, for-
mula 3.196.3�. Therefore, we have

��1 =
�

2
2m
�
k=0

�

�2k + 1�C2k+1
�2k − 1� ! !

�2k� ! !
�E − U0�k

+
�

2
2m
�
k=0

�

2�k + 1�C2k+2
2�2k� ! !

�2k + 1� ! !
�E − U0�k+1/2,

�19�

and

��2 =
�

2
2m
�
k=0

�

�2k + 1�C2k+1
�2k − 1� ! !

�2k� ! !
�E − U0�k

−
�

2
2m
�
k=0

�

2�k + 1�C2k+2
2�2k� ! !

�2k + 1� ! !
�E − U0�k+1/2.

�20�

Notice that the first term in the first summation is the only
one that does not depend on the energy. Notice also that the
constants Cn do not depend on the energy as well. After
adding Eqs. �19� and �20�, we obtain for the apsidal angle the
expression

��a =
�


2m
�
k=0

�

�2k + 1�C2k+1
�2k − 1� ! !

�2k� ! !
�E − U0�k. �21�

Notice that this series does not depend on the even coeffi-
cients. Equations �19�–�21� are our main results. These re-
sults allow for the explicit calculation of the apsidal angle for
given initial conditions. Equation �21� represents the series
development of an analytical function and is convergent in
some neighborhood of U0. For practical purposes, Eq. �21�
can be truncated and we can deal with a finite number of
terms as required by the precision of the measurements. In
Sec. III we will use these equations to answer the question
we posed at the beginning of this work; that is, for what
potentials the apsidal angle has the same value for all orbits,
i.e., for arbitrary values of the energy and angular momen-
tum, and what value it assumes.

III. NEWTONIAN POTENTIAL

Let us begin by looking for potentials that keep the partial
angles ��1 and ��2 separately constant. If this happens to be
so, the apsidal angle ��a will also be constant for any value
of the energy and the angular momentum. In order to accom-
plish that, it is necessary that for n�2 all coefficients Cn in
Eqs. �17� and �18� be equal to zero. After evaluating the
coefficient C2 and setting it equal to zero, we obtain v��z0�
=0, and taking into account that z0 is an arbitrary point, it
follows that

v��z� = 0. �22�

The general solution of Eq. �22� is
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v�z� = �z2 + �z + � . �23�

The integration constant � is an additive term to the potential
and can be discarded without loss of generality. The second
derivative of the effective potential at the stationary point is
u��z0�=−� /z0. It follows that z0 is effectively a minimum
only if the constant � is negative and this corresponds to an
attractive field. For a potential function of the form given by
Eq. �23�, we can evaluate the function ���� given by Eq. �13�
to obtain

���� =
1


−
�

2z0

. �24�

Hence, the only nonzero coefficient is C1 because the func-
tion ���� for this potential does not depend on � and there-
fore ��1=��2=const. Evaluating the first coefficient for this
potential, we obtain

��1 = ��2 =


2

1 +

2�z0

�
. �25�

For a fixed value of the angular momentum, any potential of
the form given by Eq. �23� generates bounded orbits with
equal and constant angles ��1 and ��2 and thus the apsidal
angle ��a as defined by Eq. �14� will also be constant. More-
over, if only the constant � vanishes, that is, if the potential
is of the form v�z�=�z, it is possible to obtain a potential for
which the apsidal angle is also independent of the angular
momentum. This potential corresponds to the Newtonian
one, the apsidal angle is , and the orbits are closed. The
vector r0 is perpendicular to the vectors rmax and rmin, which
in their turn are antiparallel vectors with respect to each
other, defining in this way only one symmetry axis of the
trajectory of the particle. As we can see from Eq. �25�, it is
possible to calculate exactly the apsidal angle for a field
given by Eq. �23� even if ��0, and in this way determine
the precession rate. This suggests that it is also possible to
generalize this procedure in order to perform this calculation
for an arbitrary central field.

IV. ISOTROPIC HARMONIC-OSCILLATOR POTENTIAL

Let us now look for potentials that keep the apsidal angle
��a constant. In order to accomplish this, it is necessary that
all the odd coefficients Cn starting from the third one be zero.
As before, we begin by explicitly calculating the lowest-
order coefficient, namely, C3. Evaluating this coefficient, set-
ting it equal to zero, and considering the arbitrariness of z0,
we obtain the following differential equation:

5

3
v�2�z� − �v��z� −

v��z�
z

�v�iv��z� = 0. �26�

Writing the function v�z� as

v�z� =
z2

2
� ��z�

z
dz −

1

2
� z��z�dz , �27�

we can recast Eq. �26� into the form

5

3

1

z��z�
d

dz
�z��z�� −

d

dz
�1

z

d

dz
�z��z��

1

z

d

dz
�z��z��

= 0. �28�

Equation �28� can be immediately integrated and its general
solution is

��z� =
1

z
�Az2 + B�−3/2, �29�

where A and B are arbitrary integration constants. Notice
now that the Newtonian potential analyzed before, which is a
solution of Eq. �22�, is also a necessarily solution of Eq. �26�
as can be immediately verified. Such a solution can be ob-
tained from Eq. �29� by setting A=0. Therefore, without any
loss of generality, we suppose A�0 and for convenience
recast Eq. �29� into the form

��z� =
4k

z
�z2 + �2�−3/2, �30�

where k�0 and � are different constants. We write �2 in
order to assure that the function ��z�, and consequently the
corresponding potential function, does not become ill defined
in the region around z=0. Making use of Eqs. �30� and �27�,
we can determine the potential function v�z�. For �=0, we
obtain

v�z� =
k

2z2 + �z2 + � , �31�

and for ��0

v�z� = −
4kz
z2 + �2

�4 + �z2 + � . �32�

The constant � is a simple shift of the zero of the potential
and does not influence the law of force. Considering first the
potential given by Eq. �31� and evaluating the second deriva-
tive of the effective potential at the stationary point, we ob-
tain

u��z0� =
2k

z0
4 . �33�

It follows that we will have a minimum only if k�0. Making
use of Eq. �13�, we have

���� =
2

k

z0
2�

� + z0
. �34�

Performing the analytical continuation of Eq. �34� and mak-
ing use of the Cauchy formula, we obtain from Eq. �12�

Cn =
1

n
�2

k
�n/2 1

2i
z0

2n�
Cz0

�n

��2 − z0
2�nd� . �35�

The integral in Eq. �35� can be easily evaluated by making
the transformation �=�2−z0

2 in the neighborhood of z0. It
follows then
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Cn =
1

n
�2

k
�n/2 1

2i
z0

2n�
Cz0

�� + z0
2�

�n
n−1/2d� . �36�

The residue of Eq. �36� is obviously null if n is an odd
integer greater than one. Therefore, we can be sure that all
potentials given by Eq. �31� generate orbits for which the
apsidal angles depend only on the angular momentum. The
apsidal angle for this class of potentials follows from Eq.
�21� and is given by

��a =
�


2m
C1 =



2

1 −

�z0
4

2k
. �37�

Recall that z0 is linked to �. In order to have an apsidal angle
not dependent on the angular momentum, it is necessary that
the constant � be set equal to zero. This will lead us to
potentials of the form

v�z� =
k

2z2 , �38�

which corresponds to the isotropic harmonic oscillator. In
this case, Eq. �37� yields

��a =


2
, �39�

and, therefore, the orbit is closed.

V. ADDITIONAL THIRD POTENTIAL

Finally let us consider the potential given by Eq. �32� for
which the effective potential reads as

u�z� = −
�z
z2 + �2

�4 +
��4z0

3 + 2�2z0�z2

4�4z0
2
z0

2 + �2
. �40�

The second derivative of u�z� at z0 is easily evaluated and the
result is

u��z0� =
�

z0

�z0

2 + �2�3
. �41�

We can see that only for ��0 we will have a minimum, and
in what follows we will show that this must indeed be the
case here. Making use of Eq. �13�, we obtain after some
algebraic manipulations

���� =
 1

2k


z0

4 + �2z0
2

�

��2 + 2z0

2��2 + 2
z0
4 + �2z0

2
�4 + �2�2 + �2z0
2

� + z0
.

�42�

Next we consider the analytical continuation of this function.
The complex function given by Eq. �42� has algebraic
branching points at z= �z0 and z= � i� and is defined on a
four-sheeted Riemann surface. Hence, we choose a sheet on
this Riemann surface such that the functions ���� do not
have branch points at z= �z0 and with a branch cut along the
imaginary axis from z= i� to z=−i�. Notice that in this case,
the numerator of Eq. �42� does not have zeros. Making use of
Cauchy formula, we can write

	dn−1�n�z�
dzn−1 	

z=z0

=
�n − 1�!

2i
�

Cz0

�n���d� , �43�

where we have defined

���� =
 1

2k


z0
4 + �2z0

2
��2 + 2z0
2��2 + 2
z0

4 + �2z0
2
�4 + �2�2 + �2z0

2

�2 − z0
2 �44�

and Cz0
is a small closed path encircling the point z0. The

integrand in Eq. �43� has another pole at the point z=−z0.
Then, choosing the path indicated in Fig. 2, the following
results can be easily obtained:

lim
R→�

�
CR

�n���d� = 0, �45�

if n�1; and also

lim
r2→0

�
C

�n���d� = 0, �46�

and

lim
r4→0

�
C

�n���d� = 0. �47�

Finally, the integral over the finite parts of the real axis and
the imaginary axis �see Fig. 2� cancel out. Then we have

�
�=z0

�n���d� + �
�=−z0

�n���d� = 0, �48�

for n�1. We can easily prove by making the substitution �
→−� in the second integral above that

�1 + �− 1�n+1��
�=z0

�n���d� = 0, �49�

and therefore we conclude that
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	dn−1�n�z�
dzn−1 	

z=z0

= 0, �50�

if n is an odd integer greater than one. The last step is the
evaluation of the apsidal angle for this case. Making use of
Eqs. �4� and �40�, we have

�2 = −
mv��z0�

z0
= −

m

z0
�−

1

2

��4z0
3 + 2�z0�

�2
z0
4 + �z0

2
− 2��

= m� ��2z0
2 + ��

�2z0

z0

2 + �
− 2�� . �51�

Taking this result into Eq. �21�, we obtain

��a =



�

��z0

2 + �����2z0
2 + ��

�2 − 2�z0

z0

2 + ��� .

�52�

The potentials given by Eq. �32� generate orbits for which
the apsidal angles depend only on the angular momentum. In
this third case, it is not possible to find constants � and � in
such a way that those angles do not depend also on the an-
gular momentum.

VI. FINAL REMARKS

In this work, we have introduced a method for the com-
putation of the apsidal angle directly for an arbitrary central
field of force and give explicit expressions for certain par-
ticular cases. Equation �21� is the result of these calculations.
We have derived the conditions under which the apsidal
angles remain independent of the energy and angular mo-
mentum and lead to closed orbits. We have found that only
the Newtonian and the isotropic oscillator potentials present
such behavior. Moreover, from Eq. �21� we have also calcu-
lated explicitly the value of their associated apsidal angles
and have found the well-known results  /2 and , respec-
tively. We can see also that these two special fields are
strongly determined by the dependence of the centrifugal
potential on 1 /r2. As a consequence, we have reobtained
Bertrand’s theorem. After more than 100 years since its pub-
lication, Bertrand’s theorem still attracts our attention �12�.
Other proofs of Bertrand’s theorem, some of them very in-
teresting, �see, for instance, the phase-space approach in �13�
or the Hamiltonian one in �14�� can be found in the literature.
We have also obtained a third potential which we can lay
aside because it does not meet the conditions that lead to
bounded closed orbits. Finally, we would like to remark that
the apsidal angle as given by its series representation �Eq.
�21��, which converges in some neighborhood of U0 �circular
orbits�, shows that if all orbits near to the circular one have
the same apsidal angle then there are only two possible po-
tentials that admit this fact: the Newtonian and the isotropic
harmonic-oscillator one. This is related to a similar result
obtained by Féjoz and Kaczmarek �15� concerning periodic
orbits close to circular ones.

The analytical function techniques applied to the problem
of finding the only central fields that allow for an entire class
of bounded closed orbits with a minimum number of restric-
tions lead in a concise straightforward way directly to the
two allowed fields. Equation �21� seems promising and its
applications go beyond the rederivation of Bertrand’s results.
In fact, it can be taken as the starting point in the discussion
of problems related to precession phenomena. Work by the
present authors in this direction is in progress and results will
be published elsewhere.
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FIG. 2. Contour for the integration of Eq. �45�.
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